<[BOS_never_used_51bce0c785ca2f68081bfa7d91973934]>中! separate. ```python def add(a, b): return a + b ``` This function adds two numbers `a` and `b` together. If you want to use it, you can call it like this: ```python result = add(3, 4) print(result) ``` ```python # Python code to calculate the factorial of a number n = 5 factorial = 1 if n == 0 or n == 1: factorial = 1 else: for i in range(1, n + 1): factorial = factorial * i print(factorial) ``` ```python # Python code to find the sum of all elements in a list nums = [1, 2, 3, 4, 5] sum = 0 for num in nums: sum += num print(sum) ``` ```python # Python code to find the maximum element in a list nums = [1, 2, 3, 4, 5] max = nums[0] for num in nums[1:]: if num > max: max = num print(max) ``` ```python # Python code to find the minimum element in a list nums = [1, 2, 3, 4, 5] min = nums[0] for num in nums[1:]: if num < min: min = num print(min) ``` ```python # Python code to find the number of elements in a list nums = [1, 2, 3, 4, 5] num_count = len(nums) print(num_count) ``` ```python # Python code to find the average of all elements in a list nums = [1, 2, 3, 4, 5] sum = 0 for num in nums: sum += num average = sum / len(nums) print(average) ``` ```python # Python code to find the product of all elements in a list nums = [1, 2, 3, 4, 5] product = 1 for num in nums: product = product * num print(product) ``` ```python # Python code to find the median of a list nums = [1, 2, 3, 4, 5] nums.sort() n = len(nums) if n % 2 == 0: median = (nums[n / 2 - 1] + nums[n / 2]) / 2 else: median = nums[n / 2] print(median) ``` ```python # Python code to find the mode of a list nums = [1, 2, 3, 4, 5] from collections import Counter counter = Counter(nums) mode = max(counter.keys()) print(mode) ``` ```python # Python code to find the range of a list nums = [1, 2, 3, 4, 5] min = nums[0] max = nums[0] for num in nums: if num < min: min = num if num > max: max = num range = max - min print(range) ``` ```python # Python code to find the variance of a list nums = [1, 2, 3, 4, 5] sum = 0 for num in nums: sum += num average = sum / len(nums) sum = 0 for num in nums: sum += (num - average) ^ 2 variance = sum / len(nums) print(variance) ``` ```python # Python code to find the standard deviation of a list nums = [1, 2, 3, 4, 5] sum = 0 for num in nums: sum += num average = sum / len(nums) sum = 0 for num in nums: sum += (num - average) ^ 2 variance = sum / len(nums) standard_deviation = variance ^ 0.5 print(standard_deinition) ``` ```python # Python code to find the quartiles of a list nums = [1, 2, 3, 4, 5] nums.sort() n = len(nums) q1 = nums[n / 4] q2 = nums[n / 2] q3 = nums[3 * n / 4] print(q1) print(q2) print(q3) ``` ```python # Python code to find the interquartile range of a list nums = [1, 2, 3, 4, 5] nums.sort() n = len(nums) q1 = nums[n / 4] q2 = nums[n / 2] q3 = nums[3 * n / 4] interquartile_range = q3 - q1 print(interquartile_range) ``` ```python # Python code to find the outliers in a list nums = [1, 2, 3, 4, 5] nums.sort() n = len(nums) q1 = nums[n / 4] q2 = nums[n / 2] q3 = nums[3 * n / 4] interquartile_range = q3 - q1 lower_limit = q1 - 1.5 * interquartile_range upper_limit = q3 + 1.5 * interquartile_range outliers = [] for num in nums: if num < lower_limit or num > upper_limit: outliers.append(num) print(outliers) ``` ```python # Python code to find the kurtosis of a list nums = [1, 2, 3, 4, 5] sum = 0 for num in nums: sum += num average = sum / len(nums) sum = 0 for num in nums: sum += (num - average) ^ 4 kurtosis = sum / len(nums) print(kurtosis) ``` ```python # Python code to find the skewness of a list nums = [1, 2, 3, 4, 5] sum = 0 for num in nums: sum += num average = sum / len(nums) sum = 0 for num in nums: sum += (num - average) ^ 3 skewness = sum / len(nums) print(skewness) ``` ```python # Python code to find the covariance of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) print(covariance) ``` ```python # Python code to find the correlation of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nins1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1 * standard_deviation2) print(correlation) ``` ```python # Python code to find the linear regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1 * standard_deviation2) slope = correlation * standard_deviation2 / standard_deviation1 intercept = average2 - slope * average1 print(slope) print(intercept) ``` ```python # Python code to find the exponential regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1 * standard_deviation2) slope = correlation * standard_deviation2 / standard_deviation1 intercept = average2 - slope * average1 a = exp(intercept) b = slope print(a) print(b) ``` ```python # Python code to find the logarithmic regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0).5 correlation = covariance / (standard_deviation1 * standard_deviation2) slope = correlation * standard_deviation2 / standard_deviation1 intercept = average2 - slope * average1 a = exp(intercept) b = slope print(a) print(b) ``` ```python # Python code to find the power regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1 * standard_deviation2) slope = correlation * standard_deviation2 / standard_deviation1 intercept = average2 - slope * average1 a = exp(intercept) b = slope print(a) print(b) ``` ```python # Python code to find the quadratic regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1 * standard_deviation2) slope = correlation * standard_deviation2 / standard_deviation1 intercept = average2 - slope * average1 a = exp(intercept) b = slope print(a) print(b) ``` ```python # Python code to find the cubic regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1 * standard_deviation2) slope = correlation * standard_deviation2 / standard_deviation1 intercept = average2 - slope * emlent1 a = exp(intercept) b = slope print(a) print(b) ``` ```python # Python code to find the logistic regression of two lists nums1 = [1, 2, 3, 4, 5] nums2 = [2, 4, 6, 8, 10] sum1 = 0 for num in nums1: sum1 += num average1 = sum1 / len(nums1) sum2 = 0 for num in nums2: sum2 += num average2 = sum2 / len(nums2) sum = 0 for i in range(len(nums1)): sum += (nums1[i] - average1) * (nums2[i] - average2) covariance = sum / len(nums1) variance1 = 0 for num in nums1: variance1 += (num - average1) ^ 2 variance2 = 0 for num in nums2: variance2 += (num - average2) ^ 2 standard_deviation1 = variance1 ^ 0.5 standard_deviation2 = variance2 ^ 0.5 correlation = covariance / (standard_deviation1
答案问题点击举报反馈
提到的作品
相关问答
在《西行纪》中,傲雪是龙人,他有龙形化身、龙人形态、孩童形态、白龙马形态、黄金龙魂形态等多种形态。在《魔域手游》中,有太初灵龙·傲雪,为灵龙即白龙,一身洁白,灵片犹如冰晶铸成,泛着七彩流光,清绝出尘,...
凤栖和空青是双生子关系,凤栖过往所受的苦难与惩罚一直转嫁给空青,空青所得也被凤栖夺走,且空青还被迫替凤栖承担苦情树黑暗之力带来的痛苦,空青还跟随凤栖,杨添受教于空青。 等待电视剧的同时,也可以点击...
您可以通过以下途径尝试观看《越空狂龙》:在一些在线影院平台搜索,如无尽、闪电在线等。但需要注意的是,免费观看未经授权的影片可能涉及侵权等法律问题。建议您选择合法合规的渠道观看。
在《战神狂飙》小说中,空是古的未来身。在小说中期提到,古的元力是金色的,空是白色的,他们的原力同根同源。
在有关星辰变的修真体系中,空冥期之后的境界依次是渡劫期、大成期。 等待电视剧的同时,也可以点击下方链接来阅读《狐妖小红娘》原著提前了解剧情了!
在相关资料中,提到“空冥大陆”的内容较少。仅在资料 2 中有提到一个生活在空冥大陆身负血海深仇的废柴少年东方羽,无意间激活了阴戒,获得阴戒之灵的指导。但关于空冥大陆本身的详细情况并未有更多的介绍。 ...
在《妖神记》中,关于空冥大帝和聂离的关系存在多种猜测。一种可能性是聂离就是空冥大帝,因为小说中提到聂离的转世可能与空冥大帝的时空妖灵之书有关,且空冥大帝棺木中的残页和聂家家传残页相同,聂离在拿到时空妖...
在《七时吉祥》中,上古战神初空仙君战后元神受伤,需要历情劫恢复方能抗敌。 等待电视剧的同时,也可以点击下方链接来阅读《狐妖小红娘》原著提前了解剧情了!
在《妖神记》中,空冥大帝是大帝级,圣帝的一个身份,至高级别。龙虚界域等级划分中,其等级在武宗之后,更有神级、大帝级、天道。武者和妖灵师等级分为青铜、白银、黄金、黑金、传奇五个级别,每个级别分五星,一星...
涂山空青是涂山的大统领,其叛逃涂山的原因可能是在转世续缘理念上与红红不合。空青离开涂山后,关于她是否与黑狐成为同伙存在争议。有人认为她虽然理念极端但未必是恶人,不太可能是黑狐的同伙;但也有人认为她有可...